Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1225-6692(Print)
ISSN : 2287-4518(Online)
Journal of the Korean earth science society Vol.36 No.4 pp.351-359
DOI : https://doi.org/10.5467/JKESS.2015.36.4.351

An Analysis of the Sensitivity of Input Parameters for the Seismic Hazard Analysis in the Korean Peninsula

Min-Ju Ki,Jai-Bok Kyung*
Department of Earth Science Education, Korea National University of Education, Chungbuk 363-791, Korea
*Corresponding author: jbkyung@knue.ac.kr ,Tel: +82-43-230-3794, Fax: +82-43-232-7176
July 21, 2015 August 13, 2015 August 25, 2015

Abstract

This study is to analyze the sensitivity for the parameters (a and b values, Mmax, attenuation formula, and seismo-tectonic model) which are essential for the seismic hazard map. The values of each parameter were suggested by 10 members of the expert group. The results show that PGA increases as a value and Mmax become larger and as b value smaller. Big impact on the seismic hazard is observed for attenuation formula, a and b values although there is little impact on Mmax and seismo-tectonic model. These parameters with big impact require careful consideration for obtaining adequate values that well reflects the seismic characteristics of the Korean peninsula.


한반도 지진위험도 산출을 위한 입력 파라메타의 민감도 분석

김민주,경재복*
한국교원대학교 지구과학교육과, 363-791 충북 청원군 강내면 태성탑연로 250

초록

본 연구는 지진위험도 산출에서 불확실성을 줄이는 한 방법으로서 지진위험도 계산에 입력되는 파라미터들(a, b값, Mmax, 감쇠식 및 지진지체구조)이 지진위험도 값에 어느 정도로 영향을 미치는지 민감도를 분석하고자 하였다. 이를 위해 지진 전문가 10명이 제시한 입력자료를 사용하였다. 그 결과 a값, Mmax값이 커질수록 PGA값이 증가하였으며, b값은 작 아질수록 PGA값이 커졌다. 가장 큰 영향을 미치는 파라메타는 감쇄식, b값 및 a값이며, Mmax와 지진지체구조구 모델의 영향은 상당히 적었다. 따라서 영향이 큰 파라메타에 대해서는 한반도의 지진학적 특성에 적합한 값의 산출이 요구된다.


    Ministry of Public Safety and Security
    MPSS-자연-2013-70

    1.서 론

    최근 네팔의 대지진(2015)을 비롯하여 일본 동북부 대지진(2011), 인도네시아의 지진해일(2005), 일본의 고베지진(1996), 중국의 쓰촨지진(2008) 등 지진에 의한 인명 및 재산 피해규모는 다른 종류의 자연재 해에 비해 상대적으로 가히 천문학적인 규모이다. 따 라서 이러한 특성을 가진 지진재해에 대비하기 위한 지진재해도 연구는 대단히 중요하다.

    장래 발생 가능한 피해 지진에 대비하기 위해 국 내에서도 지진재해대책법(2008)이 제정되어 지진과 지진해일의 관측, 예방, 대비, 지진대책과 지진재해를 줄이기 위한 연구 및 기술개발 등에 필요한 사항을 규정하게 되었다. 이에 따라 내진 대책의 일환으로 국가지진위험지도를 작성하여 내진설계 등에 활용할 수 있게 되었다. 우리나라에서 내진설계 목적으로 처 음 만들어진 지진위험지도는 한국지진공학회가 주관 하여 만든 지진위험지도(Ministry of Construction and Transportation, 1997)이며, 그 이후 KIGAM (2012), 2013년 소방방재청에서 다시 갱신(근거: 지진재해대 책법 제12조)하여 작성한 소방방재청지진위험지도가 있다.

    이들 지진위험지도는 특정 기간에 걸쳐 특정 초과 확률(예: 50년 내에 10%)을 가지는 최대지반가속도 (PGA: Peak Ground Acceleration) 값의 분포를 나타 낸다. 이렇게 최종 지진 위험지도가 작성되기 위해선 한반도의 지진학적 특성을 반영하는 다양한 입력 파 라메타(지진지체구조 모델, 지진동 감쇄식, 지진목록, 지진활동도(a, b값), Mmax, Mmin 등)가 입력자료로 사 용된다. 그러나 얼마나 신뢰성 있는 자료가 사용되느 냐에 따라 지진위험도는 상당한 차이를 나타낸다.

    지진위험도 분석은 결정론적 방법과 확률론적 방법 이 있으며 확률론적 지진위험도 분석은 다양한 지 진·지질학적 특성을 반영하여 유도된 지진동 감쇄식 과 다수의 지진지체모델을 가중치와 함께 고려하는 방법으로 결정론적 방법보다 민감도가 작다는 장점을 가지고 있다(Noh, 2009). 하지만 이러한 지진재해도 분석에는 위에 제시된 변수에 신뢰성을 뒷받침할 충 분한 자료를 갖지 못하기 때문에 불확실성이 재해도 에 내재하게 된다. 이들 자료의 신뢰성을 높이기 위 해 지진전문가 자문단을 구성하고, 각 파라메타에 대 하여 한반도 지진활동 특성에 적합한 자문위원들의 평가 값과 가중치를 기초자료로 하였다.

    따라서 본 연구는 확률론적 지진위험도를 구하는데 필요한 입력 파라미터들에 대한 민감도 분석을 통하 여 각 입력변수가 지진재해도 값에 어느 정도로 영 향을 미치는가를 분석함으로써 지진위험지도의 불확 실성을 줄여나가는 데 기초 자료로 활용하고자 한다.

    2.확률론적 지진위험지도

    확률론적지진위험지도는 국가마다 다르지만 지진입 력자료의 변동과 연구방법의 다양화로 주기적으로 갱 신하고 있다. 미국의 경우, USGS(US Geological Survey)의 주도하에 1996년 이후 6년마다(2002년, 2008년, 2014년) 지진소스모델, 감쇠식이 개발되거나, 단층이 추가 발견되는 경우 이를 반영하기 위해 갱 신해오고 있다(Frankel et al., 1996; Frankel et al., 2002; Petersen et al., 2008; Petersen et al., 2014). 일본도 지진조사연구추진본부(HERP, Headquaters for Earthquake Research Promotion)에서 지속적 연구를 기반으로 국가지진위험지도를 갱신해오고 있다(http://www.jishin.go.jp/main/index-e.html).

    확률론적 지진위험도는 McGuire (1995)에 의하면 다음과 같은 식으로 계산된다.

    γ y = i v i m r f M i m f R i M i r m P Y > y m , r dmdr
    (1)

    여기서, γ (y)y보다 큰 지반운동 진폭 Y를 일으키 는 지진의 연간 발생률이다. Y는 최대지반가속도(속도, 변위)이다. i는 각각의 지진원이며, vi는 지진원 i에서 일정한 지진규모보다 큰 규모를 갖는 지진의 연간 발생 률을 나타낸다. fM(m)fRi|Mi(r|m)은 각각 규모와 거 리에 대한 확률밀도함수이며, P[Y>y|m,r] 은 거리 r에서 발생한 규모 m의 지진이 어떤 지점에서 y보 다 큰 지반운동 진폭을 생성할 확률을 나타낸다. 지 진위험도는 고려된 모든 지진원의 기여에 대한 누적 합으로 나타낸다.

    지진위험도는 어떤 지점에서의 지반가속도 준위에 대한 연초과확률(annual rate of exceedance)을 나타 내지만, 이 계산을 위해서는 지진원, 지진활동도, 지 진동 전달 특성이 입력 자료로 투입된다. 그 과정을 요약하면 다음과 같다.

    첫 단계로 지진원(seismic source zone)은 지질학적, 지체구조적 특성과 지진학적 특성에 따라 선지진원, 면적지진원 혹은 점지진원으로 설정한다. 둘째 단계 는 관측 기간에 대하여 각 지진원의 지진활동성을 결정하게 된다. 즉, 규모-지진발생 빈도를 나타내는 Gutenberg-Richter 관계식(M =a −blogN)에서 a, b값 을 구한다. 셋째 단계에서는 PGA값을 구하기 위해 해당지역에서 지진에너지가 전파되어 갈 때 감쇄되는 정도를 나타내는 감쇄공식을 유도하여 적용하는 것이 다. 마지막 단계에서는 모든 가능성을 고려하여 지진 규모와 거리를 수학적으로 적분하고 각각의 지진 규 모 및 거리에 따라 다양한 준위의 가속도를 초과하 는 지진의 연발생빈도를 평가하기 위하여 부지의 최 대지반가속도의 분포, 즉 최대지반가속도에 대한 초 과확률을 구한다.

    여기서 지진위험도를 구하기 위해 투입되는 각 입 력 파라메타들이 어느 정도로 지진위험도에 영향을 미치는가를 평가하는 것은 상당히 중요하다. 이것을 파악하기 위해 다음과 같이 파라메타별 민감도 분석 을 실시하였다. 본 연구를 위래 사용한 프로그램은 미국 USGS의 공개 소프트웨어인 Harmsen(2008)을 우리나라에 적용 가능하도록 부분적으로 수정하여 사 용하였다.

    3.입력 파라메타 별 민감도

    3.1.지진활동도 변수 a, b값

    Gutenberg-Richter (1954)는 지진의 규모와 개수에 대한 경험적인 관계식을 제안하였다.

    log N =a−b*M

    위 식은 해당 지역에서 발생한 규모 M 이상의 누 적 지진발생빈도 N, MN에 의해 결정되는 변수 a, b로 구성된다. 일반적으로 N은 연간 발생하는 규모 M 이상 지진의 수(연간 지진 발생률)를 뜻하게 된다. a값은 M>0인 지진의 연간 발생 횟수이며, 해 당지역에서 지진이 얼마나 많이 발생하는지를 보여주 는 변수이다. b값은 여러 규모를 가지는 지진의 상 대적 발생빈도에 대한 정보를 포함하고 있다. 즉, 지 진의 규모와 발생 빈도의 상관관계를 나타내는 변수 라고 할 수 있다. 지역에 따라 다르지만 일반적으로 b값은 0.8~1.0을 나타낸다.

    본 연구를 위해 학계, 산업계, 연구소등에서 지진 분야 연구와 업무에 경험이 많은 전문가들로부터 입 력파라미터를 제공받아 민감도를 분석할 범위를 설정 하였다. 우선 a, b값을 분석하기 위해 Table 1과 같 이 파라미터를 고정하였다.

    자문위원이 제출한 자료 중 a값의 최소값은 1.44 이며, 최대값은 6.65이다. a값과 b값은 상호 보완적 으로 움직이는 변수로서 하나만 따로 분석하는 것에 대한 의미는 작지만 경향성을 파악하기 위해 3.0에서 6.5 사이를 0.5 단위로 분석하였다. 이때 b값은 0.8, Mmin 3.0, Mmax 7.0, 감쇄식은 전문가들이 선택한 감 쇄식 중 가장 많은 비율을 차지한 Toro et al (1997)Jo and Baag (2003)을 가중치 각각 40%로 적용 하고 Noh and Lee (1995)을 20%로 적용하였다. 지 진원은 한반도를 하나의 지체구조구로 사용하여 서울 지역에서 나타난 수치가 전국에 동일하게 나타날 수 있도록 하였다. 그 결과는 Fig. 1와 같다.

    a값이 증가하면서 PGA값이 증가함을 알 수 있고 a값이 작을 때 변화보다 a값이 클 때 즉, 지진활동 이 활발할 경우의 변화가 더욱 크게 나타남을 알 수 있다. 1000년의 재현주기의 경우 값이 4.5일 때 0.0067 g 의 PGA값을 나타내나 6.5일 경우 0.14 g의 값을 나 타낸다.

    b값을 분석하기 위해 다른 파라미터는 a값 분석 시와 동일하게 Table 1과 같게 하며, a값은 5.0으로 고정한 후 b값을 분석하였다. 전문가들이 제시한 자 료 중 b값의 경우의 최소값은 0.55이며, 최대값은 1.31 로 나타났다. 이 중 0.6에서 1.1까지 0.1단위로 민감 도 분석을 해 보았으며 그 결과는 Fig. 2과 같다.

    b값이 커질수록 동일한 연발생초과확률에 대하여 PGA값은 줄어드는 경향을 볼 수 있으며. 1000년 재 현주기의 경우 b값이 0.6일때 0.22 g의 PGA값을 보 이지만 1의 경우 0.006 g의 PGA값을 나타낸다.

    3.2.최대지진 규모(Mmax)

    최대지진 규모(Mmax)는 연구 지역 내에서 발생 가 능성이 있는 최대 규모의 지진을 의미하며, 이론상 설정된 연구지역내에서는 최대 규모 지진 이상의 지 진은 발생하지 않는다고 볼 수 있다. 최대지진 규모 의 추정법은 크게 두 가지로 확률론적인 방법과 결 정론적인 방법(Wells and Coppersmith, 1994; Kijiko, 2009)을 들 수 있다.

    확률론적인 방법은 연구지역내에서 발생한 지진 데 이터를 통계학적인 방법으로 처리하여 Mmax를 추정 하는 것이다. 일정 기간 내에 기준 규모(Mmin) 이상의 지진에 대한 데이터를 모아보면 이 데이터에서 지진 의 규모는 상호 독립적이고 균일하게 분포하며, 지진 규모의 확률밀도함수(PDF: Probabilistic Density Function)와 누적분포함수(CDF: Cumulative Density Function)는 무작위 값을 가진다고 볼 수 있다. 이때, 기록된 가장 큰 지진의 규모와 확률밀도함수, 누적분 포함수 및 각각의 표준편차 등을 고려하여 최대지진 규모를 결정하게 되며 이 규모를 연구지역에서 발생 할 수 있는 상한으로 본다.

    결정론적인 방법은 지진규모와 지체구조 또는 단층 관련 상수들 사이의 경험적 관계로부터 Mmax를 추정 하는 방법 혹은 지진모멘트나 지각변형률-Mmax 관계, coda Q0-Mmax 관계 등으로부터 최대지진 규모를 추정 하게 된다.

    한편, 최소지진 규모(Mmin)는 연구지역의 구조물에 피해를 가져오는 지진규모의 최소값을 말하는 것으로 해당지역의 주된 구조물의 특징을 고려하여 연구지역 특성에 맞게 결정되는 값이다.

    본 연구에서는 Mmin은 4.0으로 고정하고 Mmax값의 변화를 통해 민감도를 분석하였다. 이 때 다른 파라 미터 분석시와 같이 a/b값은 5.0/0.8로 고정하고 감 쇄식은 Toro et al. (1997), Jo and Baag (2003)을 가 중치 각각 40%, Noh and Lee (1995)을 20%로 적용 하였으며, 지진원은 한반도 전체를 한 단위의 지체구 조구로 설정하였다. Mmax값에 대한 민감도 분석 결과 는 Fig. 3와 같다.

    여기서 Mmax의 값이 커질수록 더 큰 PGA값을 가 지는 경향을 보이며, 재현주기 1000년에서 Mmax 5.0 인 경우 PGA는 0.0134g, Mmax 7.5의 경우 0.0247g의 값을 가진다. 이는 Mmax의 변화에 따른 PGA값의 변 동폭이 a 혹은 b값의 변화에 따른 PGA값의 변동폭 에 비해 상당히 작음을 알 수 있다.

    3.3.지진동 감쇠식

    지진위험도를 평가하는데 가장 중요한 요소 중 하 나는 지진의 에너지가 진원으로부터 거리에 따라 감 쇠하는 정도를 나타내어주는 감쇄식이다. 진원에서 발생한 지진은 기하학적 분산에 의해 진폭이 감소하 게 되며 또한 지진파 전파 매질의 비탄성에 의해서 도 감쇠된다. 따라서 지진파의 감쇠는 지역의 지반 조건에 따라 다양하게 나타난다. 현재까지 어느 나라 에서도 하나의 감쇠식만 고려하여 지진위험도를 계산 하는 곳이 없는 것으로 보아 불확실성이 크다는 것 을 반증하기도 한다. 한반도에 적용한 감쇠식은 전문 가 10인으로부터 추천받은 13개 감쇠식이며, 규모 6 에 대하여 거리에 따라 PGA값의 감쇠 경향을 나타 내면 Fig. 4와 같다.

    감쇄식이 달라짐으로 인한 PGA 값의 변화 즉 민 감도를 알아보기 위해, 본 연구에서 지진원도는 한반 도 전체, a/b값은 5.0/0.8, Mmax 7.0으로 고정한 후, 여러 감쇄식에 대하여 거리에 따른 PGA 값의 감쇄 정도를 비교하였다. 전문가 그룹이 추천한 13개 감쇄 식에 따른 민감도 분석의 결과는 Fig. 5과 같다.

    그 결과 1000년 재현주기에 대하여 Abrahmson and Silva (2008) 감쇄식이 0.010 g로 가장 작은 PGA 값을 나타낸 반면 Kanno et al. (2006) 감쇄식은 0.17 g 로 최대값응 보인다. 13개의 감쇄식 적용 결과 다른 파라메타에 비해 감쇄식이 선택에 따라 지진위험도 결과에 상당한 영향을 주는 것을 알 수 있다.

    3.4.지진원(지지체구조구) 모델

    지진원은 지진학적 특성을 달리하는 구역, 즉 지체 구조적인 특성의 차이 혹은 지진 발생 메카니즘이나 지진활동성의 차이, 지질 및 지형학적인 특성의 차이 에 의해 구분되어지는 구역을 말한다. 우리나라 지진 위험도 산정을 위해 10명의 전문가들로부터 각 전문 가가 가장 이상적으로 생각하는 지진지체구조구를 추 천받았다. 이들 중 가장 많이 추천된 7개의 지진지체 구조구 모델에 따른 민감도를 분석하고자 하였다. 이 를 위해 지진자료는 KIGAM (2012) 목록으로 고정 하고, a 5.0, b 0.9, Mmax 7.0으로 고정하고 2절에서 기술된 ab값, Mmax를 구하는 방법으로 각 지진 지체구조구별 ab값, Mmax값을 구하여 민감도를 분석하였으며, 이때 사용된 감쇠식은 Toro et al. (1997), Jo and Baag (2003)은 가중치 각각 40%, Noh and Lee (1995)는 20%를 적용하였다.

    이 때 주요도시, 즉 서울, 대전, 광주, 부산에서 지 진진체구조구가 달라짐으로 인해서 발생할 수 있는 PGA값의 변화를 구하였으며, Fig. 7은 각 지역에서 의 값의 분포를 나타낸다.Fig. 6

    Fig. 7을 보면 적용된 지체구조 모델이 달라진다고 하더라도 동일 지역에서 PGA값의 변화 폭은 상당히 작다. 재현주기 1000년인 경우, 각 도시에서 지체구 조 모델을 다양하게 적용했을 때의 PGA값의 변화를 보면 대부분의 경우 0.017-0.048 범위 내에 포함되며, 다른 파라메타에 비해 PGA 값에 미치는 영향이 작게 나타난다. 특히, 다른 파라메타와 달리 재현주기가 길 어져도 변화폭이 상당히 작게 나타남을 알 수 있다.

    4.결 론

    본 연구는 한반도에서 지진위험도 작성에서 불확실 성을 줄이고자 지진위험도 산출에 필요한 입력 파라 미터들(ab값, Mmax, 감쇄식 및 지진지체구조)의 민감도를 분석함으로써 지진위험지도 작성에서 어떤 요소들이 어느 정도로 중요하게 영향을 미치는지를 파악하고자 하였다. 이를 위해 지진 및 지진위험도 분야 전문가들(10명)이 각 입력파라메타에 대하여 제 시한 값을 중심으로 지진위험도를 산출하였으며, 그 결과는 다음과 같다.

    1. 민감도 분석에서 a값, Mmax값이 커질수록 PGA 값이 증가하며, b값이 작아질수록 PGA값이 증가한다.

    2. 지진위험도에 가장 큰 영향을 미치는 파라메타 는 감쇠식, b값 및 a값 순이며, 재현주기가 길어질 수록 변화폭은 커져 불확실성이 커진다.

    3. Mmax와 지진지체구조구 모델의 변화가 지진위험 도 값에 미치는 영향은 상당히 작다.

      이러한 결과는 확률론적 지진위험도 분석을 위한 입력파라미터 값의 결정시 불확실성을 줄일 수 있는 참고자료로 이용될 수 있으며, 위험도에 큰 영향을 미치는 파라메타에 대해서는 한반도의 지진학적 특성 에 적합한 값의 산출을 위한 다양한 연구방법을 개 발함으로써 보다 신뢰성 있는 지진위험도 작성이 이 루어질 수 있으리라 본다.

    Figure

    JKESS-36-351_F1.gif

    Seismic hazard curve with the range of a value from 3.0 to 6.5.

    JKESS-36-351_F2.gif

    Seismic hazard curve with the range of b value from 0.6 to 1.1.

    JKESS-36-351_F3.gif

    Sensitivity of seismic hazard curves by different Mmax values.

    JKESS-36-351_F4.gif

    Several attenuation curves applied to the seismic hazard analysis in the Korean peninsula.

    JKESS-36-351_F5.gif

    Sensitivity of seismic hazards to the attenuation Equation

    JKESS-36-351_F6.gif

    Several types of seismic zonation map applied for this study.

    JKESS-36-351_F7.gif

    Sensitivity of seismic hazards to the seismo-tectonic models for Seoul, Daejeon, Gwangju, and Busan.

    Table

    Input parameters for seismic hazard analysis

    Reference

    1. Abrahamson and Walter Silva (2008) Summary of the Abrahamson & Silva NGA ground-motion relations Earthquake Spectra, Vol.24 ; pp.67-97
    2. Atkinson GM , Boore David M (1997) Some comparisons between recent ground motion relations , Seismological Research Letters, Vol.68 ; pp.24-40
    3. Atkinson GM , Walter Silva (2000) Stochastic modeling of California ground motions , Bulletin of the Seismological Society of America, Vol.90 ; pp.255-274
    4. Boore David M , Atkinson GM (2008) Groundmotion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.001s and 10.0s, Earthquake Spectra , Vol.24 ; pp.99-138
    5. Boore David M , Atkinson GM (2011) Modifications to existing ground-motion prediction equations in light of new data , Bulletin of the Seismological Society of America, Vol.101 ; pp.1121-1135
    6. Frankel A , Mueller C , Barnhard T , Perkins D , Leyendecker EV , Dickman N , Hanson S , Hopper M (1996) National Seismic-hazard maps: Documentation June 1996 , USGS open file report, ; pp.96- 532
    7. Frankel A , Petersen MD , Mueller CS , Haller KM , Wheeler RL , Leyendecker EV , Wesson RL , Harmsen SC , Cramer CH , Perkins DM , Rukstales KS (2002) Documentation for the 2002 update of the national seismic hazard maps,m USGS open file 02-420,
    8. Gutenberg B , Richter CF (1954) The seismicity of the earth and associated phenomena , Princeton University Press,
    9. Jo N-D , Baag C-E (2003) Estimation of spectrum decay parameter and stochastic prediction of strong ground motions in southeastern Korea , Journal of The Earthquake Engineering Society of Korea, Vol.7 ; pp.59-70
    10. Junn J-G , Jo N-D , Baag C-E (2002) Stochastic prediction of ground motions in southern Korea , Geosciences Jounal, Vol.6 ; pp.203-214
    11. Kanno T , Narita A , Morikawa N , Fujiwara H , Fukushima Y (2006) A new attenuation relation for strong ground motion in Japan based on recorded data , Bulletin of the Seismological Society of America, Vol.96 ; pp.879-897
    12. Kijko A (2009) Different techniques for estimation of the maximum earthquake magnitude Mmax, File: mmax_Rev 20 May 2009 , Aon-Benfield Natural Hazard Centre,
    13. Kim H-L , Kim S-K , Choi K-R (2010) Application of the JMA instrumental intensity in Korea , Journal of The Earthquake Engineering Society of Korea, Vol.14 ; pp.49-56
    14. Korea Institute of Geoscience and Mineral Resources (2012) Active fault map and seismic hazard map (the 3rd year report) NEMA-science-2009-24, Vol.900
    15. Lee K , Kim JK (2002) Intensity attenuation in the Sino-Korean Craton , Bulletin of the Seismological Society of America, Vol.92 ; pp.783-793
    16. McGuire RK (1995) Probabilistic seismic hazard analysis and design earthquakes: closing the loop , Bulletin Seismological Society of America, Vol.85 ; pp.1275-1284
    17. Ministry of Construction and Transportation (1997) A Study on Seismic Design Code (II) , Journal of The Earthquake Engineering Society of Korea,
    18. Noh MH (2009) Application of PSHA for domestic nuclear power plant sites , 14th Nuclear Safety Information Conference , ; pp.4-6
    19. Noh MH , Lee KH (1995) Estimation of peak ground motions in the southeastern part of the Korean Peninsula (II): Development of predictive equations , Journal of Geological Society of Korea, Vol.31 ; pp.175-187
    20. Petersen MD , Frankel AD , Harmsen SC , Mueller CS , Haller KM , Wheeler RL , Wesson RL , Zeng Y , Boyd OS , Perkins DM , Luco N , Field EH , Wills CJ , Rukstales KS (2008) Documentation for the 2008 update of the national seismic hazard maps, USGS open file, 2008-1128,
    21. Petersen MD , Moschetti MP , Powers PM , Mueller CS , Haller KM , Frankel AD , Zeng Y , Rezaeian S , Harmsen SC , Boyd OS , Field N , Chen R , Rukstales KS , Luco N , Wheeler RL , William RA , Olsen AH (2014) Documentation for the 2014 update of the national seismic hazard maps, USGS open file 2014-1091, ; pp.2014-1091
    22. Toro G R , Abrahamson N A , Schneider J F (1997) Model of strong ground motions from earthquakes in Central and Eastern North America: Best Estimates and uncertainties , Seismological Research Letters, Vol.68 ; pp.41-57
    23. Harmsen S (2008) USGS software for probabilistic seismic hazard analysis , USGS, Vol.51
    24. Yun K-H , Park D-H , Chang C-J , Sim T-M (2008) Estimation of the uncertainty of the ground-motion attenuation relation based on the observed data , Journal of the Earthquake Engineering Society of Korea, ; pp.116- 123
    25. Wells D , Coppersmith K (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, surface displacement , Bulletin of Seismological Sociey of America, Vol.84 ; pp.974-1002