Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1225-6692(Print)
ISSN : 2287-4518(Online)
Journal of the Korean earth science society Vol.34 No.7 pp.645-661

극저기압에 의한 한반도 강설 발달기구 분석

김진연1, 민기홍2,*
1기상청 국가태풍센터, 699-942, 제주특별자치도 서귀포시 남원읍 서성로 810-2
2경북대학교 대기원격탐사연구소, 702-701, 대구광역시 북구 대학로 80
본 연구에서는 2010년 12월 27일부터 28일까지 서울을 포함한 수도권 지역에 많은 강설을 일으킨 사례의 종관적, 열역학적 및 역학적 특징을 조사하였다. 이 사례는 극저기압으로 분류할 수 있는 특성을 지녔다. 분석에 사용된 자료는 지상 및 상층 일기도, 강설량, 해수면온도, 위성사진, 연직프로파일 및 미국 국립환경예측센터의 전구 1o×1o 재분석자료 등이다. 극저기압은 대기 하층에서 양의 경압성이 강하게 나타나며 925 hPa에 온난이류가, 700 hPa에 한랭이류가 있어 조건부 불안정층이 뚜렷하게 보이는 곳에서 형성되는 것으로 사료된다. 극저기압의 발달기구는 대류권계면 접힘에 의한 성층권 공기의 유입과 그에 따른 위치 소용돌이도의 증가로 하층에 수렴과 저기압성 순환의 유발에 기인한다. 이는 눈구름의 발달로 이어져 서울 지역에는 10 cm, 남부지방에는 최고 20 cm까지 적설을 보였다. 강설의 발달기간동안 상층 500 hPa에는 −45o의 한랭핵이 존재하였고 단파골과 지상 기압골간의 위상차도 3-5o를 이루어 극저기압이 온난역의 저기압성 소용돌이도 이류 지역에서 발달할 수 있었다. 발달의 최성기에는 역학적 대류권계면이 700 hpa까지 하강하였고 위치소용돌이도의 증가로 상승기류도 강화되었다. 전반적으로 강설의 발생과 대류권계면의 파상운동과는 깊은 관련을 보였다. 극저기압이 한반도를 통과하는 동안 대류권계면이 하강하는 지점의 동쪽에 소용돌이도와 상승기류가 강화되었고 동시에 많은 습기가 이류되는 곳에서 강설량도 최대로 나타났다.

Analysis of Snowfall Development Mechanism over the Korean Peninsula due to Polar Low

*Corresponding author:

*Tel: +82-53-950-7334

*Fax: +82-53-950-6359
, Jinyeon Kim1, Ki-Hong Min2,*

1National Typhoon Center, Korea Meteorological Administration, Jeju 699-942, Korea
2Center for Atmospheric Remote Sensing, Kyungpook National University, Daegu 702-701, Korea


The synoptic, thermodynamic, and dynamic characteristics of a heavy snowfall event that occurred in Seoulmetropolitan area on 27 to 28 December 2010 was investigated. During this period there was a distinctive case that wasidentified as a polar low. We analyzed surface and upper level weather charts, snowfall amount, sea surface temperature,satellite imagery, sounding, and the National Center for Environmental Prediction global 1o×1o reanalysis data. The polarlow developed in an area where there was strong baroclinicity in the lower level aided by strong conditional instabilitydue to 925 hPa warm air advection and 700 hPa cold air advection. The development mechanism of polar low is due, inpart, to the tropopause folding, which advected stratospheric air increasing potential vorticity in mid-level and inducingcyclonic vorticity and convergence in low-level. Eventually clouds developed and there were snowfall total of 10 cm inSeoul metropolitan area and as much as 20 cm in southern parts of Korea. During the snowfall development, there was a−45oC cold core at 500 hPa and shortwave maintained 3-5o separation with surface trough, which favored the developmentof polar low located in the warm sector and cyclonic advection area. The height of the dynamical tropopause lowered to700 hPa during the peak development and increase in potential vorticity allowed strong vertical motion to occur. Overall,there was a close relationship between the development of snowfall and tropopause undulation. The heaviest snowfalloccurred east of the tropopause folding where strong cyclonic vorticity, vertical motion, and moisture advection allcoincided while the polar low was passing through the Korean peninsula.


1.Bell, G.D. and Bosart, L.F., 1993, A case study diagnosis of the formation of an upper level cutoff cyclonic circulation over the eastern United States. Monthly Weather Review, 121, 1635 1655.
2.Bithell, M., Gray, L.J., and Cox, B.D, 1999, A three dimensional view of the evolution of midlatitude stratospheric intrusions, Journal of Atmospheric Science, 56, 673 688.
3.Bolton, D., 1980, The computation of equivalent potential temperature. Monthly Weather Review, 108, 1046 1053.
4.Businger, S. and Baik, J. J., 1991, An Arctic hurricane over the Bering. Monthly Weather Review, 119, 2293 2322.
5.Fu, G., Niino, H., Kimura, R., and Kato, T., 2004, A polar low over the Japan Sea on 21 January 1997. Part I: Observational analysis. Monthly Weather Review, 132, 1537 1551.
6.Grønås, S., and Kvamstø, N.G., 1995, Numerical simulations of the synoptic conditions and development of Arctic outbreak polar lows. Tellus A, 47, 797 814.
7.Hirschberg, P.A. and Fritsch, J.M., 1991, Tropopause undulations and the development of extratropical cyclones. Part I: Overview and observations from a cyclone event. Monthly Weather Review, 119, 496 517.
8.Holton, J.R., 2004, An Introduction to Dynamic Meteorology, 4th ed. Elsevier Academic Press, Burlington, USA, 535 p.
9.Hoskins, B.J., McIntyre, M.E., and Robertson, A.W., 1985, On the use and significance of isentropic pontential vorticity maps. Quarterly Journal of Royal Meteorological Society, 111, 877 946.
10.Jeong, Y. K., 1999, Synoptic environment associated with the heavy snowfall in the Southwestern Region of Korean Peninsula. Journal of Korean Earth Science Society, 20, 398 410.
11.Jung, E. S., 1999, Analysis of intrusion of stratospheric air by VHF radar and energy change in troposphere. Kyungpook National University, Daegu, Korea, 79 p.
12.Kalnay, E., and coauthors, 1996, The NCEP/NCAR 40 year reanalysis project. Bulletin of American Meteorological Society, 77, 437 470.
13.Kim, D.J., Kim, D.H., Chun, J.M., and Hong, K.D., 2010, A study of mesoscale heavy snowfall development mechanism in Jeju Island. Proceedings of Korean Meteorological Society, Busan, Korea, 206 207.
14.Kim, Y.M., Youn, Y. H., and Chung, H. S., 2004, Potential vorticity thinking as an aid to understanding mid latitude weather systems. Journal of Korean Meteorological Society, 40, 633 647.
15.KMA, 2011, Analysis of winter heavy snowfall cases using satellite imagery (Analysis of heavy snowfall characteristics based on conceptual models). KMA National Satellite Center, Technical note 2011 2, 55 p.
16.Kristjánsson, J.E., and coauthors, 2011, The Norwegian IPY THORPEX: Polar lows and Arctic fronts during the 2008 Andøya campaign. Bulletin of the American Meteorological Society, 92, 1443 1466.
17.Kurz, M., 1994, The role of diagnostic tools in modern weather forecasting. Meteorology and Applications, 1, 45 67.
18.Kwak, B.C. and Yoon, I.H., 2000, Synoptic analysis on snowstorm occurred along the East Coast of the Korean Peninsula during 5 7 January, 1997. Journal of Korean Earth Science Society, 21, 258 275.
19.Lee, H. R., 2007, Development mechanism of a wintertime explosive cyclone: A case study. Kyungpook National University, Daegu, Korea, 155 p.
20.Lee, H. R., Kim, K. E., Yoo, J. M., and W. J. Lee, 2002, Tropopause undulation as sociated with explosive development of a cyclone. Journal of Korean Meteorological Society, 38, 431 463.
21.Lee, H. R., Kim, K. E., Yoo, J. M., and Min, K. D. 2001, A study on a severe winter weather occurred in the Korean Peninsula by tropopause undulation. Journal of Korean Meteorological Society, 37, 195 224.
22.Lee, H.Y, Ko, H.Y., Kim, K. E., and Yoon, I.H., 2010, An analysis of characteristics of heavy rainfall events over Yeongdong Region associated with tropopause folding. Journal of Korean Earth Science Society, 31, 354 369.
23.Lee, T. Y. and Park, Y. Y., 1998, A numerical modeling study of mesoscale cyclongenesis to the east of the Korean Peninsula. Monthly Weather Review, 126, 2305 2329.
24.Martin, J.E., 2005, Mid latitude Atmospheric Dynamics A First Course. Wiley, West Sussex, U.K., 324 p.
25.Park, J. H., Kim, K. E., and Heo, B. H., 2009, Comparison of development mechanisms of two heavy snowfall events occurred in Yeongnam and Yeongdong Regions of the Korean Peninsula. Journal of Korean Meteorological Society, 19, 9 36.
26.Park, S. G. and Lee, T. Y., 2005, A case study of mesoscale cyclone development in the East Sea during winter. Proceedings of Korean Meteorological Society, Daegu, Korea, 34 35.
27.Rasmussen, E., 1979, The polar low as an extratropical CISK disturbance. Quarterly Journal of Royal Meteorological Society, 105, 531 549.
28.Reed, R.J., 1979, Cyclogenesis in polar air streams. Monthly Weather Review, 107, 38 52.
29.Reed, R.J. and Duncan, C.N., 1987, Baroclinic instability as a mechanism for the serial development of polar lows: a case study. Tellus 39A, 376 85.
30.Reed, R.J. and Sanders, F., 1953, An investigation of the development of a mid tropospheric frontal zone and its associated vorticity field. Journal of Meteorology, 10, 338 349.
31.Reynolds, R.W., Smith, TM., Liu, C., Chelton, D.B., Casey, K.S., and Schlax, M.G., 2007, Daily high resolution blended analyses for sea surface temperature. Journal of Climate, 20, 5473 5496.
32.Uccellini, L.W., Keyser, D., Brill, K.F., and Walsh, C.H., 1985, The president's day cyclone of 18 19 February 1979, influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Monthly Weather Review, 113, 941 961.
33.WMO (World Meteorological Organization), 1986, Atmospheric Ozone 1985: Global Ozone Research and Monitoring Report. Rep. No. 16, WMO, Geneva, Switzerland, 392 p.
34.WMO (World Meteorological Organization), 1992, International Meteorological Vocabulary. Geneva, Switzerland, 784 p.
35.Yanase, W., Fu, G., Niino, H., and Kato, T., 2004, A polar Low over the Japan Sea on 21 January 1997. Part 2: A Numerical Study. Monthly Weather Review, 132, 1552 1574.