Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1225-6692(Print)
ISSN : 2287-4518(Online)
Journal of the Korean earth science society Vol.34 No.7 pp.615-625
DOI : https://doi.org/10.5467/JKESS.2013.34.7.615

백두산에서 소규모 분화로 발생 가능한 화쇄류에 대한 TITAN2D 시뮬레이션 연구

윤성효1,*, 이정현1, 김선경1, 장철우1, 조은일1, 양인숙1, 김윤정1, 김상현2, 이길하3, 김성욱4, 지오바니 마케도니오5
1부산대학교 지구과학교육과, 609-735, 부산광역시 금정구 부산대학로 63번길 2
2부산대학교 사회환경시스템공학부, 609-735, 부산광역시 금정구 부산대학로 63번길 2
3대구대학교 토목공학과, 712-714, 경상북도 경산시 진량읍 대구대로 201
4주식회사 GI, 611-839, 부산광역시 연제구 중앙대로 1048번길 11
5이탈리아 국립지구물리화산연구원 베수비우스 화산관측소
백두산은 역사시대에 다수의 분화 기록이 있으며, 2002년도에 불안정한 전조를 나타내었다. 지질조사 결과 백두산에서는 플리니안 분화로 인하여 강하화산재 발생 후 분연주의 붕괴로 화쇄류가 발생한 것이 인지되므로, 특정 분화구로부터 소규모 분화에 의한 화쇄류의 영향 범위에 대하여 시뮬레이션 하였다. 화산폭발지수(VEI) 3 이하의 분화가 발생하여 분연주의 붕괴에 의하여 화쇄류가 발생하면 칼데라 외륜산으로부터 백두산 사면을 따라 최대 7 km까지 영향을 미칠 것으로 해석되었으며, 칼데라 내의 분화구에 의한 분연주 발생 시 대부분이 칼데라 내부에 퇴적되거나, 흘러넘칠 경우에는 주로 북쪽 이도백하 상류 계곡에 두껍게 퇴적될 것으로 파악된다.

TITAN2D Simulations of Pyroclastic Flows from Small Scale Eruption at Mt. Baekdusan

*Corresponding author: yunsh@pusan.ac.kr

*Tel: +82-51-510-2723

*Fax: +82-51-513-7495
, Sung-Hyo Yun1,*, Jeong-hyun Lee1, Sunkyeong Kim1, Cheolwoo Chang1, Eunil Cho1, Innsook Yang1, Yunjeong Kim1, Sanghyun Kim2, Kilha Lee3, Seongwook Kim4, Giovanni Macedonio5

1Earth Science Education, Pusan National University, Busan 609-735, Korea
2Environmental Engineering, Pusan National University, Busan 609-735, Korea
3Civil Engineering, Daegu University, Gyeongbuk 712-714, Korea
4GI Co. Ltd., Busan 611-839, Korea
5Osservatiorio Vesuviano, Instituto Nazionale di Geofisica e Vulcanologia, Napoli, Italy

Abstract

Many eruptions of Mt. Baekdusan volcano have been recorded in the historical literatures, and there wereunrest precursors in 2002. Based on the geological survey results, it has been recognized that Mt. Baekdusan’s Plinianeruptions had caused ashfall, followed by the occurrence of pyroclastic flows, which were caused by the collapse oferuption column. Therefore, we simulated the range of the impacts of pyroclastic flows, which were caused by smalleruptions from a specific crater. Based on the simulation results, it can be interpreted that, when the pyroclastic flows arecaused by the eruption column collapse from an eruption with less than VEI 3, the impacts will range from the outer rimof the caldera to the mountain slope 7 km at the maximum distance. Furthermore, it is interpreted that, when the eruptioncolumn occurs by the crater located inside the caldera, most will be deposited inside the caldera and what overflows willbe deposited thickly mostly in the north valley, the upper stream region of Erdaobaihe.

Reference

1.Berrocal, M. and Malavassi, E., 2006, TITAN2D models of Arenal pyroclastic flows. Cities on Volcanoes 4 Conference, Quito, Ecuador.
2.Bursik, M., Patra, A., Pitman, E.B., Nichita, C., Macias, J.L, Saucedo, R., and Girina, O., 2005, Advances in studies of dense volcanic granular flows. Reports on Progress in Physics 68(2), 271 301.
3.Charbonnier, S.J. and Gertisser, R., 2009, Numerical simulations of block and ash flows using the Titan2D flow model: examples from the 2006 eruption of Merapi Volcano, Java, Indonesia. Bulletin of Volcanology 71, 953 959.
4.Cronin, S., Procter, J., Patra, A., Sheridan, M.F., and Dalbey, K., 2004, Evaluating a 2 D granular flow numerical model for prediction of lahars from Crater Lake at Ruapehu. Geological Society of New Zealand, New Zealand Geophysical Society, 26th New Zealand Geothermal Workshop.
5.Darnell, A., Barclay, J., Herd, R., and Lovett, A., 2008, Hydrological flow routing vs. existing lahar models for mapping hyperconcentrated lahar extent. IAVCEI General Assembly, Reykjavik, Iceland.
6.Delaite, G., Stinton, A.J., Sheridan, M.F., Thouret, J.C., and Burkett, B., 2004, A comparison of the TITAN2D and LAHARZ simulated debris flow hazards at El Misti Volcano, Southern Peru. Geophysical Research Abstracts 6, 01099.
7.Denlinger, R.P. and Iverson, R.M., 2001, Flow of variably fluidized granular material across three dimensional terrain: 2. Numerical predictions and experimental tests. Journal of Geophysical Research, 106, 553 566.
8.Francis, P., 1993, Volcanoes: A planetary perspective. Oxford University Press, Walton Street, New York, 249, 443 p.
9.Grieco, F., Capra, L., Groppelli, G., and Norini, G., 2007, TI: Numerical modeling of debris avalanches at Nevado de Toluca (Mexico): Implications for hazard evaluation and mapping. AGU Joint Assembly, Acapulco, Mexico.
10.Groppelli, G., Capra, L., Norini, G., and Savi, S., 2008, Volcanic collapse at Jocotitlan volcano (Mexico): Analogue modeling and flow simulation. IAVCEI General Assembly, Reykjavik, Iceland.
11.Hidayat, D., Widiwijayanti, C., Voight, B., Patra, A., and Pitman, B., 2008. TITAN2D based modeling of dome collapse pyroclastic flows for crisis assessments on Montserrat. IAVCEI General Assembly, Reykjavik, Iceland.
12.Iguchi, M., Ishihara, K., Surono, and Hendrasto, M., 2011, Learn from 2010 eruptions at Merapi and Sinabung volcanoes in Indonesia. Annuals of Disaster Prevention Research Institute, Kyoto University, 54B, 185 194.
13.Iverson, R.M., 1997, The physics of debris flows. Reviews of Geophysics, 35, 245 296
14.Iverson, R.M. and Denlinger, R.P., 2001, Flow of variably fluidized granular material across three dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research, 106, 537 552.
15.Lee, S.H. and Yun, S.H., 2011, Impact of meteorological wind fields average on predicting volcanic tephra dispersion of Mt. Baekdu. Journal of the Korean Earth Science Society, 32, 360 372.
16.Lee, S.T., 1987, A report of an on site survey of Mt. Changbaishan. Jirin Cultural Press (in Chinese).
17.Macias, J.L., Capra, L., Arce, J.L., Espindola, J.M, Garcia Palomo. A., and Sheridan, M.F., 2008, Hazards map of El Chichon Volcano, Chiapas, Mexico: Constraints posed by eruptive history and computer simulations. Journal of Volcanology and Geothermal Research, 175, 444 458.
18.Mageney Castlenau, A., Vilotte, J.P., Bristeau, M.O., Perthame, B., Bouchut, F., Simeoni, C., and Yernemi, S., 2003, Numerical modelling of avalanches based on Saint Venant equations using a kinetic scheme. Journal of Geophysical Research, 108, 2527. 9 1~18 doi:10.1029/2002JB002024
19.Munoz, E., Palacios, D., Namikawa, L., Sheridan, M. and Renschler, C., 2004, Contrast between computer simulations and field observations of Popocatepetl lahars. Geophysical Research Abstracts 6, (1st European Geosciences Union General Assembly 2004, Nice, France), 04599.
20.Murcia, H.F., 2008, Depositos de lahar del Complejo Volcanico Tacana y depositos fluviales en el abanico de Tapachula, Chiapas, Mexico. MSc Thesis, Universidad Nacional Autonoma de Mexico, Mexico D.F., 153 p.
21.Murcia, H.F., Hurtado, B.O., Cortes, G.P., Macias, J.L., and Cepeda, H., 2008a, The 2500 year B.P. Chicoral non cohesive debris flow from Cerro Machin Volcano, Colombia. Journal of Volcanology and Geothermal Research, 171, 201 14.
22.Murcia, H.F., Sheridan, M.F., and Macias, J.L., 2008b, TITAN2D pyroclastic flows simulations at Cerro Machin volcano, Colombia. IAVCEI General Assembly, Reykjavik, Iceland.
23.Ogburn, S., Calder, E., Dalbey, K. and Ryan, G., 2008, Modeling pyroclastic flow hazards in the Belham valley, Soufriere Hills volcano, Montserrat. IAVCEI General Assembly, Reykjavik, Iceland.
24.Patra, A.K., Bauer, A.C., Nichita, C.C., Pitman, E.B., Sheridan, M.F., Bursik, M., Rupp, B., Webber, A., Stinton, A.J, Namikawa, L.M., and Renschler, C.S., 2005, Parallel adaptive simulation of dry avalanches over natural terrain. Journal of Volcanology and Geothermal Research, 139, 1 2.
25.Pitman, E.B., Patra, A., Bauer, A., Nichita, C., Sheridan, M.F. and Bursik, M., 2003, Computing debris flows. Physics of Fluids 15, 3638 646.
26.Procter, J., Cronin, S., Patra, A., Dalbey, K., Sheridan, M., and Platz, T., 2004a, Utilising TITAN2D to Forecast Dome collapse Block and ash flow (bafs) Hazards from Mount Taranaki, New Zealand. IAVCEI General Assembly, Pucon, Chile.
27.Procter, J., Cronin, S., Sheridan, M., and Patra, A., 2004b, Application of Titan2d mass flow modelling to assessing hazards from a potential lake breakout lahar at Ruapehu volcano, New Zealand. IAVCEI General Assembly, Pucon, Chile.
28.Rupp, B., Bursik, M., Namikawa, L., Webb, A., Patra, A.K., Saucedo, R., Macias, J.L., and Renschler, C., 2006, Computational modeling of the 1991 block and ash flows at Colima Volcano, Mexico. In: Siebe, C., Macias, J.L., Aguirre Diaz, G.J. (Eds.), Neogene Quaternary Continental Margin Volcanism: A Perspective from Mexico. Geological Society of America Special Paper 402. Penrose Conference Series, 237 252.
29.Sato, H. and Taniguchi, H., 1997, Relationship between crater size and ejecta volume of recent magmatic and phreato magmatic eruptions: Implications for energy partitioning, Geophysical Research Letters, 24, 205 208.
30.Savage, S.B. and Hutter, K., 1989, The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics. 199, 177 215.
31.Sheridan, M.F., Stinton, A.J., Patra, A., Pitman, E.B., Bauer, A., and Nichita, C.C., 2005, Evaluating Titan2D mass flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. Journal of Volcanology and Geothermal Research, 139, 89 02.
32.Siebert, L., Simkin, T., and Kimberly, P., 2010, Volcanoes of the world, Third Edition: Smithsonian Institute/University of California Press, Berkeley, CA, USA, 568p.
33.Soh, W.J. and Yun, S.H., 1999, A review of the Holocene major eruption of Mt. Paektu volcano. Journal of Korean Earth Science Society, 20, 534 543.
34.Stinton, A.J., 2008, Using field mapping, GIS and computer flow modelling to understand volcanic flow hazards. Abstract of IAVCEI General Assembly, Reykjavik, Iceland, 4 e.
35.Stinton, A.J., Sheridan, M.F., Patra, A., Dalbey, K. and Namikawa, L.M., 2004, Integrating variable bed friction into Titan2D mass flow model: application to the Little Tahoma Peak avalanches, Washington. Acta Volcanologica, 16, 153 63.
36.Tilling, R.I., 1989, Volcanic hazards and their mitigation. Progress and problems. Reviews of Geophysics, 27, 237 69.
37.TITAN2D User Guide, 2007, Release 2.0.0, 2007.07.09 Geophysical Mass Flow Group (GMFG). State University of New York at Buffalo, USA. 58 p.
38.Wei, H., 2013, Map of geologic structure and geo hazards in the summit of Tianchi volcanic cone (1:10,000), Volcano research center of China Earthquake Administration (CEA), China (in Chinese).
39.Widiwijayanti, C., Hidayat, D., Voight, B, Patra, A., and Pitman, E.B., 2007, Modelling dome collapse pyroclastic flows for crisis assessments on Montserrat with TITAN2D. Cities on Volcanoes 5 Conference, Shimabara, Japon, 11 P 34.
40.Xu, J., Liu G., Wu, J., Ming, Y., Wang, Q., Cui, D., Shangguan Z., Pan, B., Lin, X , and Liu, J., 2012, Recent unrest of Changbaishan volcano, northeast China: a precursor of a future eruption? Geophysical Research Letters, 39, L16305, 1 7. doi:10.1029/2012GL052600.
41.Yun, S.H., 2010, Natural hazard: Precursors of Mt. Baekdusan eruption. Abstract of 2010 Fall Conference of the Korean Earth Science Society, 3 7.
42.Yun, S.H., 2013, Volcanological interpretation of historic eruptions of Mt. Baekdusan volcano. Journal of Korean Earth Science Society, 34, 456 469.
43.Yun, S.H. and Cui, Z.X., 1996, Historical eruption records on the Cheonji caldera volcano in the Mt. Paektu. Journal of Korean Earth Science Society, 17, 376 382.
44.Yun, S.H. and Lee, J. H., 2011, Volcanological interpretation of historic record of 1702 fallout ash from the Mt. Baegdusan. Journal of Petrological Society of Korea, 20, 243 250.
45.Yun, S.H. and Lee, J. H., 2012, Analysis of unrest signs of activity at the Baegdusan volcano. Journal of Petrological Society of Korea, 21, 1 12.
46.Yun, S.H., Taniguchi, H., Wei, H. and Liu, J., 2007, Volcanic crisis of the Baegdusan. Abstract of 2007 Joint Conference of the Geological Science & Technology of Korea, 130 132.
47.Yun, S.H., Won, C.K. and Lee, M.W., 1993, Cenozoic volcanic activity and petrochemistry of volcanic rocks in the Mt. Paektu area. Journal of Geological Society of Korea, 29, 291 307.