Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1225-6692(Print)
ISSN : 2287-4518(Online)
Journal of the Korean earth science society Vol.34 No.1 pp.69-80
DOI : https://doi.org/10.5467/JKESS.2013.34.1.69

정수웨이블릿변환(IWT)을 이용한 지형 자료의 압축 및 정밀 지형 효과 계산을 위한 활용 방법 고찰

정호준1·이희순1,*·오석훈2·박계순3·임형래3
1(주)휴먼앤어스, 138-160, 서울특별시 송파구 가락동 11 베니스타워빌딩 4층
2강원대학교 에너지자원공학과, 200-701, 강원도 춘천시 강원대학길 1
3한국지질자원연구원 광물자원연구본부, 305-350, 대전광역시 유성구 과학로 124
지형 자료는 지구과학 여러 분야에서 중요한 기초 자료 중 하나이다. 최근 들어, 상세한 분해능을 가지는 DEM자료가 활용가능하며 따라서 방대한 양의 자료를 효율적으로 다루는 방법이 필요하다. 본 연구에서는 방대한 DEM 자료의 무손실 압축 및 효율적인 복원에 대해 알아보았다. 이를 위해 정수웨이블릿 변환과, 엔트로피 부호화의 개념을 이용하여, 웨이블릿 계수의 부호화 및 일부 영역의 지형복원 방법을 고안하였다. 또한, 정밀 중력 지형보정 과정에서 이러한 연구 결과의 활용성을 검토하였다. DEM의 압축률이 가장 좋은 웨이블릿은 CDF3.5이며, CDF3.1 또는 CDF3.5웨이블릿을 사용하여 3단계 정도로 분해를 하는 것이 최적의 선택이다 (약 45.4%의 압축률). 또한 웨이블릿변환의 다중단계분석 특성을 활용하여 웨이블릿계수의 일부만을 추출하여 지형의 일부만을 복원할 수 있었다.

Compression of Terrain Data using Integer Wavelet Transform (IWT) and Application on Gravity Terrain Correction

*Corresponding author: yihsoon@geolux.co.kr

Tel: +82 2 554 5451

Fax: +82 2 554 5452
, Hojoon Chung1, Heuisoon Lee1,*, Seokhoon Oh2, Gyesoon Park3, and Hyoungrea Rim3

1Human and Earth, Seoul 138-160, Korea
2Department of Energy and Resources Engineering, Kangwon National University,
Gangwon 200-701, Korea
3Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources,
Daejeon 305-350, Korea

Abstract

Terrain data is one of important basic data in various areas of Earth science. Recently, finer DEM data isavailable, which necessary to develop a method that deals with such huge data efficiently. This study was conducted onthe lossless compression of DEM data and efficient partial reconstruction of terrain information from compressed data. Inthis study, we compressed the wavelet coefficients of DEM, obtained from integer wavelet transform (IWT) by entropyencoding. CDF (Cohen Daubechies Feauveau) 3.5 wavelet showed the best compression ratio of about 45.4% and theoptimum decomposition level was 3. Results also showed that a small region of terrain could be restored from the inversewavelet transform with a part of the wavelet coefficients that are related to such region instead of whole reconstruction.We discussed the potential applications of the terrain data compression for precise gravity terrain correction.

Reference

1.Aiken, C.L. and Cogbill, A.H., 1998, Recent developments in digital gravity data acquisition on land. The Leading Edge, 17, 93 97.
2.Butler, D.K., 1984, Microgravimetic and gravity gradient techniques for detection of subsurface cavities. Geophysics, 49, 1094 1096.
3.Hammer, S., 1939, Terrain Correction for Gravimeter Stations. Geophysics, 4, 181 194.
4.Hardy, R.L., 1971, Multiquadric Equations of Topography and Other irregular Surfaces. Journal of Geophysical Research, 76, 1905 1915.
5.Krohn, D.H, 1976, Gravity Terrain Corrections using Multiquadric Equations. Geophysics, 41, 266 275.
6.Kwon, B.D., Kwon, J.W., and Lee, H., 1990, Terrain correction of gravity data by suing a multiquadric equation. Journal of the Korean Earth Science Society, 11, 156 164. (in Korean)
7.Lee, H. and Lim. H., 2010, Precise Gravity Terrain Correction of Gravity Exploration for small anomalous bodies, Journal of the Korean Earth Science Society, 31, 1 7. (in Korean)
8.Lim, H., Lee, H., Park, Y.S., Lim, M., and Jung, H.K., 2010, Gravimetric terrain correction using triangular element method. Jigu Mulli wa Mulli Tamsa, 13, 169 174. (in Korean)
9.Mallat, S., 1989, A theory for multiresolution signal decomposition: The wavelet representation. Pattern Analysis and Machine Intelligence, 11, 674 693.
10.Sweldens, W., 1998, The lifting scheme: A construction of second generation of wavelets. SIAM Journal on Mathmatical Analysis, 29, 511 546.