Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1225-6692(Print)
ISSN : 2287-4518(Online)
Journal of the Korean earth science society Vol.34 No.1 pp.13-27

크리깅 방법을 기반으로 한 레이더 강우강도 오차 조정

1부경대학교 환경대기과학과, 608-737, 부산광역시 남구 용소로 45
2경북대학교 천문대기과학과, 702-701, 대구광역시 북구 대학로 80
3부경대학교 지구과학연구소, 608-737, 부산광역시 남구 용소로 45
정량적인 강수량 추정은 기상학·수문학적 연구와 활용에 가장 중요한 요소 중 하나이다. 본 논문에서는 정량적 강수량 추정을 위하여 레이더 강우의 지리통계적 오차 구조 함수를 공동크리깅에 적용하여 레이더 강우강도를 조정하였다. 레이더 강우강도의 오차는 공동크리깅의 주변수로서 지상 우량계와 레이더의 강우강도의 차이로 산출되었다. 지상 우량계 강우장은 공동크리깅의 이차변수로서 정규크리깅에 의해 산출되었다. 레이더 강우강도의 오차 분포는 실험적 베리오그램으로 결정된 이론적 베리오그램을 공동크리깅에 적용하여 생성되었고, 레이더 강우강도 조정을 위하여 레이더 강우강도의 오차 분포를 레이더 강우장에 적용하였다. 본 연구의 검증을 위하여 국지적으로 호우가 발생하였던 2009년 7월 6일에서 7일까지의 강우 사례를 선정하였다. 오차가 조정된 1시간 레이더 누적강우량과 지상 우량계 누적강우량의 상관성은 조정 전에 비하여 0.55에서 0.84로 향상되었고, 평균제곱근오차는 7.45에서 3.93 mm로 조정되었다.

The Adjustment of Radar Precipitation Estimation Based on the Kriging Method

*Corresponding author:

Tel: +82 51 629 6644

Fax: +82 51 629 6638
, Kwang-Ho Kim1, Min-seong Kim1, Gyu-Won Lee2, Dong-Hwan Kang3, and Byung-Hyuk Kwon1,*

1Department of Environmental Atmospheric Sciences, Pukyong National University,
Busan 608-737, Korea
2Department of Astronomy and Atmospheric Sciences, Kyungpook National University,
Daegu 702-701, Korea
3Geo-Sciences Institute, Pukyong National University, Busan 608-737, Korea


Quantitative precipitation estimation (QPE) is one of the most important elements in meteorological andhydrological applications. In this study, we adjusted the QPE from an S band weather radar based on co kriging methodusing the geostatistical structure function of error distribution of radar rainrate. In order to estimate the accuratequantitative precipitation, the error of radar rainrate which is a primary variable of co kriging was determined by thedifference of rain rates from rain gauge and radar. Also, the gauge rainfield, a secondary variable of co kriging is derivedfrom the ordinary kriging based on raingauge network. The error distribution of radar rain rate was produced by cokriging with the derived theoretical variogram determined by experimental variogram. The error of radar rain rate wasthen applied to the radar estimated precipitation field. Locally heavy rainfall case during 6 7 July 2009 is chosen to verifythis study. Correlation between adjusted one hour radar rainfall accumulation and rain gauge rainfall accumulationimproved from 0.55 to 0.84 when compared to prior adjustment of radar error with the adjustment of root mean squareerror from 7.45 to 3.93 mm.


1.Chang, K.H, 2007, Study on the weather radar application (I). National Institute of Meteorological Research, 7 p. (in Korean)
2.Chumchean, S., Seed, A., and Sharma, A., 2006, Correcting real time radar rainfall bias using a Kalman filtering approach. Journal of Hydrology, 317, 123 137.
3.Ji, Y.S., Oh, S.H., Suh, B.S., Lee, D.K., 2011, Restoration, prediction and noise analysis of geomagnetic time series data. The Korean Earth Sciences Society, 32, 613 628. (in Korean)
4.Jo, C.H., 2009, Research for the meteorological observation technology and its application. National Institute of Meteorological Research, 74 p. (in Korean)
5.Jung, S.H. and Lee, G.W., 2010, Statistical characteristics of atmospheric conditions related to radar beam propagation using radiosonde data in 2005 2006. The Korean Earth Sciences Society, 31, 584 599. (in Korean)
6.Kim, B.S., Hong, J.B., Kim, H.S., and Choi, K H., 2007, Combining radar and rain gauge rainfall estimates for flood forecasting using conditional merging method. Korean Society of Civil Engineers, 27, 255 265. (in Korean)
7.Kim, K.J., Choi, J.H., and Yoo, C.S., 2008, Synthesis of radar measurements and ground measurements using the Successive Correction Method (SCM). Korea Water Resources Association, 41, 681 692. (in Korean)
8.Korea Meteorological Administration, 2009, Annual climatological report. 13 p. (in Korean)
9.Krajewski, W.F., Lakshmi, V., Georgakakos, K.P., and Jain, S.C., 1991, A monte Carlo study of rainfall sampling effect on a distributed catchment model. Water Resources Research, 27, 119 128.
10.Marshal, J.S. and Palmer, W.M.K., 1948, The distribution of raindrops with size. Journal of of Meteorology, 5, 165 166.
11.Noh, H.S., Kang, N.R., Kim, B.S., and Kim, H.S., 2012, Flood simulation using Vflo and radar rainfall adjustment data by statistical objective analysis. Journal of the Korean Wetlands Society, 14, 243 254. (in Korean)
12.Ochou, A.D., Zahiri, E. P., Bamba, B., and Koffi, M., 2011, Understanding the variability of Z R Relationships caused by natural variations in raindrop size distributions (DSD): Implication of drop size and number. Atmospheric and Climate Sciences, 1, 147 164.
13.Park, N.W., 2011, Time series mapping and uncertainty modeling of environmental variables: A case study of PM10 concentration mapping. Journal of the Korean Earth Sciences Society, 32, 249 264. (in Korean)
14.Šálek, M., 2010, Operational application of the precipitation estimate by radar and raingauges using local bias correction and regression kriging. ERAD 2010.
15.Wang, J., Fisher, B.L., and Wolff, D.B., 2008, Estimating rain rates from Tipping Bucket rain gauge measurements. Journal of Atmospheric and Oceanic Technology, 25, 43 56.
16.Ware, E.C., 2005, Corrections to radar estimated precipitation using observed raingauge data. MSD. dissertation, Cornell University, Newyork, USA, 96 p.
17.Wilson, J.W. and Brandes, E.A, 1979, Radar measurement of rainfall a summary. Bulletin of the American Meteorological Society, 60, 1048 1058.
18.Yoo, C.S., Park, C.S., and Yoon, J.S., 2011, Decision of G/R ratio for the correction of mean field bias of radar rainfall and linear regression problem. Korean Society of Civil Engineers. 31, 393 403. (in Korean)